If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2-8=0
a = 4; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·4·(-8)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*4}=\frac{0-8\sqrt{2}}{8} =-\frac{8\sqrt{2}}{8} =-\sqrt{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*4}=\frac{0+8\sqrt{2}}{8} =\frac{8\sqrt{2}}{8} =\sqrt{2} $
| (5x+9)/(9x-4)=0 | | 9x−4=59 | | 54k^2+69=75 | | (x+27)2/3-1=24 | | 35x+7=12 | | 4=47.25-2.25x | | 2(a-3)=4a-6) | | 2.4x−12=24 | | X^3+9x+20=0 | | 4m³-3m-1=0 | | 10y=100000 | | 6(6v=6)-5=1+6v | | 7=5y+3(y+5) | | 6/x^2+2x-6x-24/x^2=2/x+2 | | 20x-(30x3+10x2)=0 | | x+126=3x | | 2(v-8)+8v=-26 | | 2x+5x=4X+7 | | (x+5)(5x+7)=0 | | -3(3y-7)-y=-4(y-5) | | h^2-99=-83 | | 3s^2=12 | | -30=5+(x+1 | | 4x+1.5x=180 | | 2x2x+5=45−74x+10 | | m^2-96=-80 | | 8x^2+36x+28=0 | | 6x2-24x+24=0 | | 4(3r+1)= | | 4(x-2)–2x=x–6 | | 3w^2=-5w | | 12=6x-84 |